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Bone metastasis is the leading cause of prostate cancer (PCa) mortality, frequently

marking the progression to castration-resistant PCa. Dysregulation of the androgen

receptor pathway is a common feature of castration-resistant PCa, frequently appearing

in association with mTOR pathway deregulations. Advanced PCa is also characterized

by increased tumor heterogeneity and cancer stem cell (CSC) frequency. CSC-targeted

therapy is currently being explored in advanced PCa, with the aim of reducing cancer

clonal divergence and preventing disease progression. In this study, we compared the

molecular pathways enriched in a set of bonemetastasis from breast and prostate cancer

from snap-frozen tissue. To further model PCa drug resistancemechanisms, we used two

patient-derived xenografts (PDX) models of bone-metastatic PCa, BM18, and LAPC9.

We developed in vitro organoids assay and ex vivo tumor slice drug assays to investigate

the effects of mTOR- and CSC-targeting compounds. We found that both PDXs could

be effectively targeted by treatment with the bivalent mTORC1/2 inhibitor Rapalink-1.

Exposure of LAPC9 to Rapalink-1 but not to the CSC-targeting drug disulfiram blocked

mTORC1/2 signaling, diminished expression of metabolic enzymes involved in glutamine

and lipid metabolism and reduced the fraction of CD44+ and ALDEFluorhigh cells, in vitro.

Mice treated with Rapalink-1 showed a significantly delayed tumor growth compared

to control and cells recovered from the tumors of treated animals showed a marked

decrease of CD44 expression. Taken together these results highlight the increased

dependence of advanced PCa on the mTOR pathway, supporting the development of a

targeted approach for advanced, bone metastatic PCa.
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INTRODUCTION

Development of bone metastasis involves 65–75% of breast
and prostate cancer patients with advanced, metastatic disease
(1) with the axial skeleton as the most common site of bone
metastasis (2).

The clinical implications revolving around the development
of a bone metastatic disease include the development of
skeletal-related events, like pathological fractures, spine chord
compression or bone pain and represent a common event in
advanced breast and prostate patients, greatly affecting their
quality of life (1, 3). Bone metastasis are frequently characterized
by a long latency period, characterized by the presence of
subclinical micrometastasis in the bone that are difficult to detect
and to target. Once symptomatic, bone metastasis is frequently
associated with a progressed, highly malignant relapse of the
disease (3). Despite its relevance, the study of bone metastasis
has been hindered by the difficulty of obtaining high quality
specimens from bone lesions (4, 5).

The dependence of prostate tissue on androgen receptor
(AR) signaling prompted the development of AR-targeting
molecules, like abiraterone and enzalutamide, for the treatment
of metastatic castration-resistant PCa (mCRPC). However,
prolonged treatment with these types of drugs fosters the
molecular evolution of PCa, increasing its propensity to
metastasis formation and to overcome castration (6). Therefore,
new and alternative approaches are currently being investigated
to overcome or limit this clinically relevant behavior. Patient-
derived xenografts (PDX) have proven to be highly valuable
tools for the development of precision medicine strategies for
the study of PCa (7). BM18 and LAPC9 are bone metastatic
PCa models with different molecular and histological features,
with androgen-dependent and -independent growth, respectively
(8, 9). A relevant advantage of using PDXmodels is the possibility
of investigating cancer stem cells (CSC), a widely recognized
hypothesis that accounts for the establishment of a low-cycling,
drug-resistant subpopulation of cells with tumor re-growth
potential (10–12).

In prostate cancer, CSC have been identified by different
parameters, including surface marker expression, subpopulation-
specific stainings and functional assays, with various degrees of
overlap between the different methods (13, 14).

The link between aldehyde dehydrogenase (ALDH) activity,
cell stemness and self-renewal potential, initially found to detect
leukemia tumor-initiating cells, was then confirmed also in
PCa where it associates with a potentially clinically relevant
subpopulation of cells (15–17).

Pharmacological approaches to target the CSC subpopulation
of PCa are currently being explored and include disulfiram,
a drug used for the treatment of alcohol abuse and currently
investigated for its activity against CSC in various tumors,
including prostate cancer, glioblastoma and melanoma (11, 18).
Multiple mechanisms of the anti-CSC action of disulfiram
have been elucidated and include its primary action in the
irreversible inhibition of aldehyde dehydrogenase (ALDH),
inhibition of ubiquitin-E3 ligase activity, inhibition of epithelial-
to-mesenchymal transition (EMT) and increase of reactive

oxygen species (ROS) (12, 18). The latter two mechanisms are
dependent on the availability of copper as a co-factor, forming
equimolar chelation complexes with disulfiram.

The mammalian target of rapamycin (mTOR) is an atypical
protein kinase that can participate in two distinct signal
transduction complexes, mTORC1 and mTORC2, regulating a
plethora of key cellular functions like cell growth, proliferation,
survival and metabolism (19, 20). mTORC1 and 2 integrate
nutrient availability status with the anabolic needs of the cell.
Deregulation of the PI3K/Akt/mTOR pathway in cancer has
been well-established and different clinical studies have found
an overactivation of this pathway in ∼40% of breast cancers
and 50% of primary prostate cancers (21–23). Targeting the
AR pathway with androgen blockers increases the activation of
the PI3K/Akt/mTOR pathway (24). Conversely, PTEN exerts a
regulatory role on the AR, acting both as AR inducer, via an Egr1-
and c-Jun-mediated mechanism, and as an AR repressor, by
controlling the negative AR regulator Nkx3.1 (25, 26). Recently,
AR- and mTOR signaling-dependent metabolic rewiring of PCa
cells and during CRPC progression was shown (27). Phase I/II
trials on PCa using rapamycin analogs (rapalogs), which inhibit
only a subset of mTORC1 functions, revealed clinical inefficacy
(28). ATP-competitive mTOR inhibitors, which block both
mTORC1 and mTORC2 kinase activity, and dual PI3K/mTOR
inhibitors also showed poor efficacy in the clinic due to
toxicity (29, 30). Rapalink-1, a bivalent compound that combines
the durable effect of rapamycin and dual mTORC1/mTORC2
inhibition, has been developed recently (31). It remains to
be examined whether Rapalink-1 would be efficacious for
PCa therapy.

The aim of the present study was to determine the impact
of the third generation mTOR-inhibiting compound Rapalink-
1 using bone-metastatic PCa PDX models in vitro, ex vivo, and
in vivo.We investigated the effects of Rapalink-1 treatment on the
CSC compartment and further compared its effects to the CSC-
targeting compound disulfiram, exploring the effects of mTOR
blockade on the CSC subpopulation.

MATERIALS AND METHODS

Patient Samples
Samples were collected from patients undergoing orthopedic
surgery for bone metastasis (prostate cancer, 5 patients; breast
cancer, 4 patients) and anonymously analyzed according to the
Dutch Medical Research Involving Human Subjects (WMO) act.
Samples were either immediately snap-frozen at the time of
surgery for further molecular analyses or shipped in Dulbecco
modified essential medium (DMEM) supplemented with 1%
penicillin/streptomycin (pen/strep) and 1% Glutamax (Thermo
Fisher Scientific) for organoids generation.

RNA Isolation and RNA Sequencing
Five mm by 5-mm snap-frozen bone metastasis samples were
placed in a tube with 1ml Tripure reagent (Sigma-Aldrich) and a
metallic bead and homogenized with the TissueLyser II (Qiagen)
for 2 cycles of 3min at 30Hz. In between cycles, samples were
incubated at −20◦C for 5min. Manufacturer’s protocol was then
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followed to extract RNA from the homogenized samples. RNA
quality was assessed by Bioanalyzer 2100 (Agilent Technologies)
using the Nano kit and following manufacturers protocol.
Samples with an “RNA Integrity Number” (RIN)> 7 were further
processed for RNA sequencing. Specimens were prepared for
RNA sequencing using the “NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina” (NEB #E7760S/L) as described
previously (32). Briefly, mRNA was isolated from total RNA
using the oligo-dT magnetic beads. After fragmentation of the
mRNA, a cDNA synthesis was performed. This was used for
ligation with the sequencing adapters and PCR amplification
of the resulting product. The quality and yield after sample
preparation was measured with the Fragment Analyzer. The size
of the resulting products was consistent with the expected size
distribution (a broad peak between 300 and 500 bp). Clustering
and DNA sequencing using the NovaSeq6000 was performed
according tomanufacturer’s protocols. A concentration of 1.1 nM
of DNA was used. Image analysis, base calling, and quality check
was performed with the Illumina data analysis pipeline RTA3.4.4
and Bcl2fastq v2.20. Sequence reads were aligned using STAR
two-pass to the human reference genome GRCh37 (33). RSEM
was used to obtain FPKM (fragments per kilobase of exon model
per million reads mapped) counts. We removed duplicated gene
names when present, keeping the one with highest expression.
Gene counts were quantified using the “GeneCounts” option
in STAR. Per-gene counts-per-million (CPM) were computed
and log2-transformed adding a pseudo-count of 1 to avoid
transforming 0. Genes with log2-CPM <1 in more than
two samples were removed. Principle component analysis was
performed using the top 200 most variable genes. Differential
expression analysis was performed using the edgeR package
(34). Normalization was performed using the “TMM” (weighted
trimmed mean) method and differential expression was assessed
using the quasi-likelihood F-test. Genes with FDR <0.05 and
>2-fold were considered significantly differentially expressed.

Immunohistochemistry and Histological
Stainings
Four-µm thick sections of FFPE blocks were cut, stained for
haematoxylin and eosin and mounted with Entellan (Merck-
Millipore). For Ki67 and panCK stainings, cut sections were
processed for antigen retrieval by pressure cooker for 10min
in citrate buffer at pH 6.0. Sections were allowed to cool
and then extensively washed in running water. Endogenous
peroxidases were blocked by incubation with 3% H2O2 for 15
min at room temperature. Sections were then washed twice
with PBS and blocked with a solution of 3% BSA in PBS-
Tween 20 0.1% (PBS-T) for 1 h at room temperature then
incubated overnight with 100 µl of anti-Ki67 (1:400, rabbit),
anti-panCK (1:100, mouse), rabbit IgG or mouse IgG as
appropriate, see Supplementary Information for a list of the
used antibodies. Sections were then washed once with PBS-T
and twice with PBS before incubation for 30min with 100 µl
of EnVision anti-rabbit or anti-mouse (Agilent Technologies).
Sections were then washed once with PBS-T and twice with PBS
and developed in a freshly prepared AEC solution (Dako) until

sufficiently developed. Sections were then washed in H2O and
counterstained with hematoxylin before mounting with Entellan.
Slides were digitalized with the Pannoramic 250 Flash III slide
scanner (3D Histech).

Western Blot
Cells were lysed in RIPA buffer (50mMTris-HCl pH 8.0, 100mM
NaCl, 5mM EDTA, 0.2% SDS, 0.5% sodium deoxycholate,
1% Triton-X100) supplemented with protease and phosphatase
inhibitors (cOmplete Mini, protease inhibitor cocktail and
PhosStop, both by Merck Millipore). Tissue pieces were
homogenized with TissueLyser II (Qiagen) for 1 cycle of 2min
at 20Hz in RIPA buffer, using a metallic bead. Organoids
were resuspended in 150 µl of RIPA buffer and homogenized
with a 0.3ml syringe. Homogenized samples were centrifuged
for 15min at >16,000 g at 4◦C and supernatant collected.
Protein concentrations were measured by Bradford assay and
about 10–30 µg of samples were used for SDS-PAGE. Proteins
were transferred onto Immobilon-PVDF (Millipore). Blots
were incubated with primary antibodies overnight followed by
washing with PBS-Tween, see Supplementary Information for
a list of the used antibodies. Blots were then incubated with
either anti-mouse or –rabbit secondary antibody. After washing
with PBS-Tween, images were visualized using Supersignal ECL
detection kit (ThermoFisher) and captured using Amersham
Imager 600 (GE).

Animals Maintenance and in vivo

Experiment
Animal experiments were conducted according to Bern cantonal
guidelines. Mice had unrestricted access to food and fresh water
and housed in max 5 animals per cage. For xenograft surgery,
nine 5-week old male CB17/SCID mice were anesthetized
by subcutaneous injection with a cocktail of medetomidin
(Dorbene) 1 mg/kg, midazolam (Dormicum) 10 mg/kg, and
fentanyl 0.1 mg/kg. Under sterile hood, two 3mm long incisions
were performed on each side in the scapular region and a
small pocket was created by lifting the skin with forceps.
Freshly harvested 2 mm3 tumor pieces were inserted into
the pockets, that were closed with resorbable 6-0 suture
(Vicryl 6-0, Ethicon). Anesthesia was reversed by subcutaneous
injection with atipamezol (Revertor R©) 2.5 mg/kg and flumazenil
(Anexate R©) 0.5 mg/kg, together with buprenorphine (Temgesic)
0.1 mg/kg for analgesia, and sutured wound was disinfected
with a iodopovidone solution. Three days post-implantation
animals were divided into 2 groups, stratified by weight. Group
1 received 3.5 µl/g of vehicle (20% DMSO, 40% PEG-300 and
40% PBS) i.p. once a week while group 2 received Rapalink-1
(1.5 mg/Kg) resuspended in vehicle, i.p. every 5–7 days. Mouse
weight, tumor size and signs of acute toxicities were monitored
twice a week, tumor size was tracked by palpation and referred to
standardized size beads, to minimize animals’ discomfort during
the experiment. Mice were euthanized as soon as signs of acute
toxicity were detected or when tumor size reached 8 mm.
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Organoid Culture
Tissues were collected in basis medium [Advanced D-MEM/F-
12 (ThermoFisher Scientific) supplemented with 1ml Primocin
(Invivogen), 1% GlutaMAX and HEPES 10mM (ThermoFisher
Scientific)], finely minced with a scalpel and incubated in 5
mg/ml collagenase type II (Gibco), supplemented with 15µg/ml
DNase I (Sigma-Aldrich) and 10mM Y-27632, at 37◦C for
1–3 h with occasional mixing, until completely digested. Cell
suspension was then centrifuged at 400 rcf for 5min and washed
with basis medium. Cell pellet was then incubated at 37◦C
in 2ml TripLE Express (ThermoFisher Scientific) for 10min,
pipetting cell suspension every 5min. Digested cell suspension
was passed through a 50µm-pore size strainer (Celltrics, Sysmex)
and washed with basis medium. When required, cells were
incubated for 5min in erythrocytes-lysing buffer to eliminate
red blood cells, then washed with basis medium. Cells were
counted with trypan blue with an automated cell counter (TC20,
Bio-Rad), centrifuged and resuspended in complete prostate
cancer organoid medium [see Supplementary Information for
the complete recipe, reproduced from (35)] at 300,000 cells/ml
and seeded in 1.5ml volume in 6-well ultra-low attachment
plates (ULA plates, Corning). Fresh medium was added every 2–
3 days until organoids were used for downstream applications.
For drug pre-treatment, LAPC9 and BM18 organoids were
cultured in 6-well ULA plates in complete PCa medium
for 48 h, then medium was replaced with fresh medium
containing the target drug at the reported concentration and
organoids were cultured for further 48 h before proceeding with
downstream analysis.

Drug Assay
Organoids were collected in basis medium and centrifuged
for 3min at 100 rcf, then they were resuspended in TripLE
Express and incubated at 37◦C with occasional resuspension
until completely dissociated. Cell suspension was then washed
with basis medium and centrifuged at 300 rcf for 5min.
Cells were resuspended at 175,000 cells/ml in complete PCa
organoids medium and seeded in 20 µl volume in a 384-
well low-attachment plate, with black walls (Corning). After
48 h, wells with organoids were treated with the appropriate
compound, resuspended in 20 µl of PCa organoids medium.
The compounds used were Rapalink-1 (10–0.001µM, ApexBio),
rapamycin (10–0.1µM), everolimus (1–0.1µM), abiraterone
(1µM, in EtOH), enzalutamide (10µM), disulfiram (10–0.1µM,
Sigma-Aldrich), DMSO (0.1%), and EtOH (0.1%). Where not
stated otherwise, the compounds were from Selleckchem, and
were resuspended in DMSO. Wells treated with disulfiram were
additionally supplemented with copper-gluconate 1µM (Sigma-
Aldrich). Each condition was assessed in quadruplicates, each
experiment was repeated 3 times for the PDXmodels and 2 times
for the patient-derived bone metastasis material.

Ex vivo Tissue Culture
Freshly collected LAPC9 and BM18 tissues were aseptically cut
into 1 mm-thick serial slices. Tissue slices were then carefully
placed on themembrane of a 0.4µMpores polypropylene 24-well
transwell (ThinCert, Grainer Bio-one International) and cultured
on 0.5ml of DMEM supplemented with 10% FBS, 1% pen/strep

and the indicated compound for 5 days at 37◦C. Before starting
the incubation, the plate with the tissue slices was inserted in a
sealed chamber and flushed for 3min with O2 (3 L/min). After
the 5 days, the tissues were collected and fixed for 2 h in 4% PFA
under constant agitation, then washed in PBS, dehydrated and
embedded in paraffin.

Flow Cytometry
Single cells from dissociated organoids or from digested tissues
were washed in FACS buffer (0.5% BSA, 2mM EDTA in PBS,
pH 7.4). Cells were resuspended in a total of 100 µl of FACS
buffer with anti-CD44-APC (1:20, BD Bioscience, clone G515)
and incubated for 20min in the dark at room temperature. Cells
were then washed once in FACS buffer before proceeding to
ALDEFluor staining, as per manufacturer’s indications. Tubes
were incubated for 45′ at 37◦C. After the incubation, cells were
washed in ALDEFluor buffer (AB) and resuspended in 300
µl of AB per tube, supplemented with 5µg/mL of DAPI and
kept on ice until acquisition with a BD LSRII flow cytometer
(BD Biosciences).

Data Analysis
Data was analyzed using Prism GraphPad 8. Flowcytometry data
was analyzed using FlowJo v. 10.6.2. All samples acquired by flow
cytometry were analyzed with technical gates by the identification
of the population of interest in a SSC-A/FSC-A dot plot, followed
by a doublets-excluding gate in a FSC-H/FSC-A dot plot and by a
viability gate for DAPI exclusion in a DAPI-A/FSC-A dot plot.
For samples stained with ALDEFluor, a minimum of 100,000
events was acquired, for other samples a minimum of 30,000
was acquired, experiments were run in biological duplicates.
Gating for ALDEFluor-high (ALDH-hi) cells was setup in
the DEAB-treated, matched control sample using median and
robust standard deviation (rSD) of fluorescence according to the
following formula:

ALDH-hi threshold = (FITC[Median] of DAPI-negative
cells)+ (3∗FITC[rSD] of DAPI-negative cells)

Ki67 immunohistochemistry was quantified with ImageJ
(v1.52p). A macro was developed to semi-automatically segment
and quantify nuclei and AEC signal. Staining is reported
as fraction of Ki67-positive nuclei over total counted nuclei,
quantifying at least 5 fields per condition.

RESULTS

Bone Metastasis From Breast and Prostate
Cancer Have Distinctive Molecular
Signatures
We investigated the molecular profile of snap-frozen bone
metastasis specimens from patients with advanced breast or
prostate cancer. For a few samples that were available in
sufficient amount, a portion of fresh specimen was fixed and
paraffin embedded to perform both a hematoxylin and eosin
(HE) histological staining and an immunohistochemistry for
cytokeratins (panCK) on cut sections (Figure 1A). The detection
of cytokeratin-positive cells as well as the overall poorly organized
bone structure in the analyzed sections confirmed the presence
of epithelial cells in the bone sample and a pathological,
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FIGURE 1 | (A) Histological sections of breast and prostate bone metastasis. Sections were stained with hematoxylin and eosin (upper row) and for cytokeratin

expression (lower row). Whole-section image included in caption. Scale bar 100µm. (B) Analysis of differentially expressed genes of breast and prostate bone

(Continued)
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FIGURE 1 | metastasis, with unsupervised cluster analysis of both samples and genes. The histological type of bone lesion is reported below the heatmap and is

referenced as lytic (L), blastic (B), or mixed (M). (C) Principal component analysis (PCA) of the top-200 most differentially expressed genes between the BCa and PCa

bone metastasis samples included in (B). While all BCa bone metastasis form a defined cluster, PCa bone metastasis show a more scattered profile that does not

recapitulate their histological subtype. (D) Geneset enrichment analysis (GSEA) of differentially expressed genes shown in (B). Scores > 0 identify genesets enriched in

the prostate bone metastasis group, while scores < 0 identify genesets enriched in the breast bone metastasis group. Only significantly enriched genesets are shown.

FIGURE 2 | Dose-response curves of LAPC9 (A) and BM18 (B) PDX organoids to mTOR-targeting drugs rapalink-1 (red circles), rapamycin (blue triangles), and

everolimus (black diamonds) after 48 h treatment. Normalized viability values of organoids are plotted against log10 drug concentrations; N = 2–3. Viability assay of

LAPC9 (C) and BM18 (D) PDX organoids after treatment for 48 h with other, non mTOR-targeting drugs. The grayed area in plots (A–D) corresponds to the expected

distribution of the reference condition (untreated). Data were analyzed by one-way ANOVA, treated conditions were compared to vehicle (DMSO, EtOH for abiraterone

treatment); N = 2–3. *p < 0.05; **, §§p < 0.01; ***p < 0.001; ****p < 0.0001.

metastasis-induced bone remodeling process. We performed
RNASeq analysis on the bone metastasis specimens, the most
differentially expressed genes among the included samples are
reported (Figure 1B).

The samples formed two subgroups by unsupervised cluster
analysis, reflecting the primary cancer of origin. Of note, the bone
metastasis samples from prostate cancer did not cluster according
to their histotype (lytic, blastic, or mixed lesions), rather

by molecular features. The molecular clustering was further
investigated by principal component analysis of the top 200
most differentially expressed genes, between the BCa and PCa
bone metastasis samples. While all BCa bone metastasis samples
formed one cluster, the PCa bone metastasis showed a more
scattered distribution, that did not correspond to the histological
bone lesion type (Figure 1C). Further pathways analysis on
the differentially expressed genes in metastatic PCa highlighted
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the enrichment of androgen response genes, together with
processes linked to lipid metabolism (adipogenesis, cholesterol
homeostasis, peroxisome, fatty acid metabolism, Figure 1D).
Moreover, PCa bone metastasis showed a specific enrichment
for the mTOR pathway, compared to BCa bone metastasis,
which showed a specific enrichment for inflammatory processes
(interferon response, angiogenesis) and for genes involved in
epithelial-to-mesenchymal transition.

Dual mTORC1/mTORC2 Blockade and
ALDH Inhibition Reduce Advanced PCa
Organoids Viability in vitro
We investigated the effects of mTOR-targeting drugs
rapamycin, everolimus and Rapalink-1, a 3rd generation
dual mTORC1/2 inhibitor on BM18 and LAPC9 PDX, in vitro
on organoids. Drug assays on PDX organoids indicated that
both LAPC9 and BM18 organoids viability was significantly

reduced when treated with Rapalink-1, with a higher IC50

in LAPC9 organoids (0.0046µM) compared to BM18
organoids (0.0003µM). LAPC9 organoid viability could
not be reduced by everolimus at the tested concentrations
and could be significantly reduced by rapamycin only at
1µM, evidencing on the other hand an average viability at
10µM. BM18 instead showed significant reduction of organoid
viability when treated with either everolimus or rapamycin
(Figures 2A,B).

We then assessed the effects of the standard of care drugs
(abiraterone and enzalutamide) on organoids from both PDX,
comparing them to disulfiram and to doxorubicin, this latter
used for its efficacy on both PDX models (Figures 2C,D). After
48 h drug exposure, none of the standard of care drugs had
significant impact on organoid viability. On the other hand,
doxorubicin effectively and dose-dependently reduced viability of
both LAPC9 and BM18 organoids. Treatment with disulfiram 1–
10µM, in presence of 1µM copper gluconate, also significantly

FIGURE 3 | Total lysates of LAPC9 and BM18 organoids treated with rapalink-1 (RL, red bars), rapamycin (RM, blue bars), everolimus (EV, black bars), disulfiram (DS,

green bars), or vehicle (V, DMSO, open bars), at the reported concentrations (µM) for 48 h were fractionated by SDS-PAGE followed by Western blotting.

Phosphorylated sites or total proteins were detected by immunoblotting using antibodies against the indicated phosphosites or protein. Molecular weight (MW) marker

sizes are indicated on the left. Beta-actin was used as loading control. (A) The activation status of mTOR was assessed by analyzing the expression of the mTORC1

downstream targets ULK (p-ULK1, S757) and S6 (pS6, S240/244) and of the mTORC2 downstream target Akt (p-Akt, S473). (B) Quantification of the phosphosites

analyzed in (A). (C) The lysates analyzed in (A) were further assayed for the activation of the hexosamine biosynthesis pathway (GFAT1; p-GFAT1, S243; NAGK) and

of glutamine (GS, GLS), nucleotide (CAD), glucose (HK II), and lipid (ACC) metabolism. (D) Quantification of the targets assayed in (C). Glutamine:fructose

6-phosphate Amidotransferase, GFAT1; Glutamine synthetase, GS; Hexokinase II, HK II; acetyl-CoA carboxylase, ACC; Glutaminase, GLS; carbamoyl-phosphate

synthetase 2, aspartate transcarbamylase, dihydroorotase, CAD; N-acetyl-Dglucosamine kinase, NAGK.
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impacted organoid viability in both PDX models and had a
dose-dependent effect.

mTORC1/2 Blockade Alters Multiple
Metabolic Pathways in Advanced PCa
Organoids in vitro
To determine the mTOR targets that become inhibited by
our drug treatment, we performed western blot analyses on

LAPC9 and BM18 organoids treated for 48 h with DMSO
0.1%, Rapalink-1 0.1–0.01µM, rapamycin 0.1µM, everolimus
0.1µM, or disulfiram 0.1µM. In both PDX models, treatment
with Rapalink-1 efficiently blocked phosphorylation of the
mTORC1 effectors, S6 (Ser240/244) and ULK1 (Ser757). It also
abolished Akt phosphorylation (Ser473) in a dose-dependent way
(Figures 3A,B). Although rapamycin and everolimus abolished
S6 phosphorylation, they had little to no effect on ULK1
phosphorylation in both LAPC9 and BM18. They also did not

FIGURE 4 | (A) Summary table of viability values and of CD44+ and ALDHHi cells in LAPC9 organoids cultures treated with DMSO 0.1% (purple circle), disulfiram

0.1µM (green circle) or Rapalink-1 0.1µM (orange circle) for 48 h before analysis via flow cytometry. Data are reported as mean ± SEM, N = 2–5. (B) Representative

ALDEFluor staining dot plots for ALDHHi determination reported in (A); open histogram, unstained; purple, DMSO; green, disulfiram; orange, Rapalink-1. Rapalink-1

reduced the ALDHHi population of cells, although not significantly. (C) Representative viability and CD44 expression plots of data reported in (A). Treatment of LAPC9

organoids with Rapalink-1 for 48 h significantly increased viability and reduced CD44 expression (p < 0.0001 for both analyses). Color code for the histograms is the

same as reported in (A). Drug screen assay on prostate bone metastasis organoids from sample BM-PCa-8. Organoids were seeded and allowed to form for 48 h

before treating with the reported drugs for 48 h. (D) Viability values of organoids across the various tested conditions were normalized and shown. The grayed area

corresponds to the expected distribution of the reference condition (untreated). Standard of care drugs (blue) were not effective treatments in vitro at the tested

concentrations, while among the mTOR-targeting drugs (orange) the highest concentrations of rapalink-1 significantly reduced organoids viability after 48 h of

treatment. Treatment with doxorubicin (1, 10µM, red) as well as with the cancer stem cell-targeting drug disulfiram (1µM, with 1µM copper gluconate, green)

significantly reduced PCa bone metastasis organoids viability. Data were analyzed by one-way ANOVA, treated conditions were compared to vehicle (DMSO). N = 2;

*p < 0.05; ***p < 0.001. (E) Representative images of BM-PCa-8 organoids after 48 h of treatment with the indicated drugs. Scale bars, 200µm.
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FIGURE 5 | (A) Quantification of Ki67-positive nuclei stained on LAPC9 ex vivo tissue slices treated with the indicated compounds; a minimum of 5 fields per

condition were analyzed. Data are reported as mean ± SD (B). Representative images of Ki67-stained uncultured and untreated tissue, as well as of tissue treated

(Continued)
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FIGURE 5 | with Rapalink-1 (RLK), rapamycin (RPM), and doxorubicin (DOX) at the reported concentrations are included, with full section enclosed in caption. Scale

bar, 50µm. (C) Schematic of the in vivo mouse experiment. R and V indicate administration of Rapalink-1 or vehicle, respectively, at the indicated day. (D) Picture of

LAPC9 tumors explanted from Rapalink-1-treated (bottom) and vehicle-treated groups (top) at the end of experiment. Mice weight curves (E) and tumor size

measurement (F) of bilateral LAPC9 PDX tumors in mice treated with vehicle (blue) or Rapalink-1 (red). For each group, n = 3 mice; Data are reported as mean ±

SEM. (G) Representative HE stainings of LAPC9 tumors from vehicle-treated (top) and Rapalink-treated (bottom) mouse groups. Scale bar, 100µm. (H) Quantification

of Ki67-positive nuclei stained on FFPE sections of LAPC9 tissues from mice treated with Rapalink-1 or vehicle; a minimum of 9 fields per sample were analyzed. (I)

Quantification of western blots of LAPC9 lysates from mice treated with Rapalink-1 or vehicle. Signal from assessed targets was normalized to loading control (beta

actin) for each lane (J). Summary table of viability values and of CD44+ and ALDHHi cells in LAPC9 tumors from mice treated with vehicle (purple circles) or Rapalink-1

(orange circles), analyzed by flow cytometry. Data are reported as mean ± SEM, N = 2–4. Representative flow cytometry plots of viability and CD44 expression are

reported in (K). (L) Representative ALDEFluor staining dot plots for ALDHHi determination reported in (J); open histogram, unstained; orange, Rapalink-1; purple,

vehicle. LAPC9 cells from tumors of mice treated with Rapalink-1 showed a non-significant increase of ALDHHi cells. A population bearing DEAB-resistant ALDH

isoforms is detected in LAPC9 tumors of mice treated with vehicle (top, left panel) that is not evident in the tumors of mice treated with Rapalink-1 (top, right panel). *p

< 0.05; **p < 0.01; ***p < 0.001.

reduce Akt phosphorylation and in fact everolimus slightly
enhanced Akt phosphorylation. In contrast, treatment with
disulfiram had little to no effect on phosphorylation of S6
and ULK1, but reduced Akt phosphorylation in both models.
Together, these findings demonstrate that Rapalink-1, but not the
rapalogues or disulfiram, can effectively block bothmTORC1 and
mTORC2 signaling in the PDX organoids.

Since mTOR controls metabolism, we investigated how
different metabolic enzymes could be affected by our drug
treatment. Consistent with the robust inhibition of mTORC2
by RapaLink-1 and previous reports that mTORC2 responds
to glutamine catabolites (35), we found that the metabolic
enzymes that are linked to glutamine metabolism such as GFAT1,
GS, GLS, and CAD were effectively diminished by RapaLink-
1 (Figures 3C,D). Furthermore, ACC, a metabolic enzyme
involved in lipid metabolism, which is also controlled by both
mTORC1 and mTORC2 (36–38), was also reduced by Rapalink-1
but not by rapamycin or everolimus. On the other hand, NAGK,
which is involved in the salvage hexosamine biosynthesis and HK
II, which is involved in glucose metabolism were not significantly
affected by any of the drug treatments. Thus, inhibiting both the
mTOR complexes using Rapalink-1 can more effectively block
the expression of metabolic enzymes involved in glutamine and
lipid metabolism.

Combined Inhibition of mTORC1/2
Decreases Stem Cell Markers in a CRPC
PDX Model and Reduces PCa Bone
Metastasis PDO Viability
To further investigate the effects of the combined mTORC1/2
inhibition on the cancer stem cell (CSC) subpopulation,
we treated LAPC9 organoids for 48 h with sublethal doses
of Rapalink-1 (0.1µM), comparing the effect to treatment
with disulfiram (0.1µM, with copper gluconate 1µM) or
DMSO (0.1%). The treated organoids were then analyzed with
flow cytometry for viability, ALDEFluor staining and CD44
expression. A table summarizing the results is reported in
Figure 4A.

We found that compared to DMSO, treatment with disulfiram
had no impact on the assessed markers, whereas treatment
with Rapalink-1 significantly reduced the CD44-positive cell
fraction (from 70.4 to 37.9%, p < 0.0001) and increased

viability (from 87.0 to 93.1%, p < 0.0001, Figure 4B). It
also decreased the fraction of ALDHHi cells, although with a
higher variability compared to the other markers (from 18.5
to 12.8%, ns, Figure 4C). Data from the BM18 PDX were also
generated and despite a trend in reduced CD44-positive cell
fraction and ALDHHi cells, comparing the effects of Rapalink-
1 and disulfiram to DMSO yielded no significant differences
(Supplementary Figure 1)

We functionally tested the effect of Rapalink-1 on CSC by
performing a drug assay on PDO from a PCa bone metastasis
sample (BM-PCa-8, Figure 4D). We found that treating the
organoids with abiraterone or enzalutamide, two standard of care
drugs normally used for the treatment of advanced castration-
resistant PCa (CRPC), had no significant effect on their
viability, supporting a castration-resistant profile for this sample.
Doxorubicin, as well as the CSC-targeting drug disulfiram,
were both effective to reduce BM-PCa organoids viability. For
this latter drug, multiple cytotoxic mechanisms of action were
proposed, both dependent and independent on copper that was
supplemented in the disulfiram-treated wells (18). Representative
pictures of the BM-PCa-8 PDO after 48 h treatment with the
reported drugs are shown in Figure 4E.

Treatment of LAPC9 in vivo With
Rapalink-1 Delays Tumor Growth
Before evaluating the effects of Rapalink-1 in vivo, we
investigated its effects on a near-patient ex vivo tissue slices assay
on the PDX LAPC9. We compared the effects of Rapalink-1
to those of rapamycin, everolimus and doxorubicin, selected as
a positive control. The effect of the drugs on the proliferation
marker Ki67 was measured on FFPE sections of the treated
ex vivo tissue. Treatment with Rapalink-1 at the three highest
concentrations tested (10–0.1µM) significantly reduced LAPC9
proliferation ex vivo, in line with the effective inhibition of
mTOR signaling and expression of several metabolic enzymes
(Figure 5A). Representative images of the ex vivo LAPC9 tissues
treated with the reported drugs are shown in Figure 5B, an image
of the whole section is enclosed. Representative output images
of ImageJ macro quantification after processing are reported in
Supplementary Figure 2.

We then assessed the effect of Rapalink-1 (1.5 mg/Kg/5–7
days) in vivo on LAPC9 PDX model, comparing the treatment
to vehicle only, a schematic of treatment schedule is reported

Frontiers in Oncology | www.frontiersin.org 10 June 2020 | Volume 10 | Article 1012

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


La Manna et al. Dual-mTOR Inhibitor Targets Prostate Cancer

(Figure 5C). At the end of the experiment, mice treated with
Rapalink-1 had significantly smaller tumors compared to mice
treated with vehicle only (Figures 5D,F). Mice treated with
Rapalink-1 did not show signs of acute toxicity throughout the
experiment and had a weight curve comparable to that of vehicle-
treated animals (Figure 5E). Basing on hematoxylin and eosin
(HE) staining, LAPC9 tissues collected from the Rapalink-treated
mouse group showed a lower fraction of necrotic tissue compared
to stainings from the vehicle group (Figure 5G). Analysis of
tumors frommice treated with Rapalink-1 showed a significantly
lower proliferative activity, as evidenced by Ki67 staining on
FFPE tumor sections (Figure 5H, Supplementary Figure 3).
Protein analysis of matched tumor lysates showed diminished
phosphorylation of S6 and ULK1, indicating inhibition of
mTORC1. Interestingly, Akt phosphorylation was enhanced
in the Rapalink-treated group, indicating that mTORC2 was
active at this time point (Figure 5I, Supplementary Figure 4).
Among the metabolic enzymes that we examined, there was an
increase of nitrogen metabolizing enzymes CAD and NAGK
and a decrease of ACC1, controlling lipid biosynthesis. In
order to assess the effect of Rapalink-1 treatment on the CSC
subpopulation of LAPC9, tumors from Rapalink-1 and vehicle-
treated animals were digested and stained for CD44 expression
and with ALDEFluor assay, whereas DAPI was used to measure
cell viability within the analyzed samples. Two samples per
condition were independently processed and acquired, a table
with the results is reported together with representative plots
of viability measurement and of CD44 expression (Figure 5J).
Tumor cells from mice treated with Rapalink-1 had on average
a significantly higher viability compared to tumors from vehicle-
treated animals (79.1 ± 0.51% vs. 60.5 ± 1.78% alive cells,
respectively, p < 0.0001). However, the CD44+ compartment
in the former samples was markedly and significantly lower
(23.9 ± 1.97% vs. 57.0 ± 2.05%, respectively, p < 0.0001),
indicating a depletion of CD44+ cells in the LAPC9 tumors
of mice treated with Rapalink-1 (Figure 5K). Unexpectedly,
the ALDEFluor assay indicated an enrichment, although not
significant, of ALDHhi cells in the Rapalink-treated tumors (16.7
± 2.10%) compared to the vehicle-treated tumors (11.1± 0.15%).
Of note, the ALDEFluor assay reveals that treatment of mice
with Rapalink-1 induced a metabolic alteration in LAPC9 cancer
cells. This was highlighted by the presence of a DEAB-resistant,
ALDEFluor-reactive subpopulation of cells clearly detectable in
the DEAB-treated samples of mice receiving vehicle (Figure 5L,
top left panel). A DEAB-resistant population was not detectable
in LAPC9 cells of mice treated with Rapalink-1 (Figure 5L, top
right panel).

DISCUSSION

Despite the intense research on the mechanisms of bone
metastasis formation, a consensus molecular classification of
bone metastasis is still missing. Metastatic bone lesions can be
histologically identified as lytic, blastic or mixed if the effect on
the bone tissue is mainly erosive, sclerotic or a co-occurrence
of both processes, respectively (1). In this work however, this

histological classification did not match the unsupervised cluster
analysis nor the PCA at the transcriptomic level, in contrast to
the findings of a recent study by Ihle et al. (36). In their study,
the authors compared lytic and blastic PCa bone metastasis by
GSE analysis, finding the enrichment of different pathways in
the lytic vs. blastic lesions. The differences found between the
present study and that from Ihle et al. may be ascribed to the
different sources used in the two settings (FFPE vs. snap-frozen
tissue). We demonstrated the cytotoxic effectiveness of Rapalink-
1, in comparison to doxorubicin, disulfiram and standard-of-care
drugs, on PCa established PDX and near-patient bonemetastasis-
derived organoids. Standard-of-care drugs abiraterone and
enzalutamide could not elicit a significant response in any of
the tested conditions. As both the established PDX and the
bone metastasis organoids are derived from advanced, bone-
metastatic prostate cancer, this result might reflect convergent
resistance mechanisms to AR inhibition possibly evolved during
tumor progression. This is particularly significative for BM18
organoids, as this model is sensitive to AR inhibition in vivo
(8, 35). The organoids in vitro culture system may enrich for a
more AR independent subpopulation, as in the in vivo castrated
state. As expected however, all organoids responded to the
chemotherapeutic drug doxorubicin targeting DNA replication.

While organoids from both PDX were significantly inhibited
by disulfiram concentrations above 1µM, in bone metastasis
organoids the significant cytotoxic effect shown at 1µM
was not replicated at the higher concentration of 10µM.
This could be explained by the chemistry of disulfiram, that
forms cytotoxic equimolar complexes with Cu2+. At 10µM
concentration the amount of uncomplexed disulfiram might
have reduced the cytotoxic effect of Cu2+-complexed disulfiram.
More significantly, the sublethal dose of 0.1µM disulfiram tested
in vitro on LAPC9 and BM18 organoids failed to significantly
modulate CSC features like CD44 expression or ALDHHi cell
fraction. Overall, these results suggest multiple mechanisms
of action of disulfiram, that could be linked to concentration
and bioavailability.

Activatingmutations in different components of the PI3K/Akt
pathway occur in 49% of mCRPC, including mutations of PTEN
(>40% of cases), and are solidly implicated in PCa progression
(37, 38). Themodulation of the PI3K/Akt/mTOR pathway during
PCa progression also correlates with alterations in the AR
pathway and the cross-talk of these two pathways is currently the
focus of active research (27, 39, 40). Increased mTOR signaling
is associated with lymph node progression and increased
lymphangiogenesis in advanced prostate cancer, supporting a
link betweenmTOR activation andmetastatic spread of PCa (41).
We confirmed the activation of the PI3K/Akt/mTOR pathway
in our group of bone metastatic PCa samples. Noteworthy, in
all models tested, including the PCa bone metastasis, we found
increased sensitivity to Rapalink-1 compared to rapamycin and
the rapalog everolimus. Several clinical trials utilizing rapalogs
either as monotherapy or combination therapy revealed clinical
inefficacy in the treatment of prostate cancer (28) as well as
other types of cancer (19). Rapalogs only inhibit a subset of
mTORC1 targets and thus have cytostatic rather than cytotoxic
effects. Hence, mTOR inhibitors that block mTOR kinase activity

Frontiers in Oncology | www.frontiersin.org 11 June 2020 | Volume 10 | Article 1012

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


La Manna et al. Dual-mTOR Inhibitor Targets Prostate Cancer

have been engineered to more fully inhibit mTOR functions.
Since the mTOR kinase domain displays homology to PI3K
catalytic domain, dual PI3K/mTOR inhibitors have also been
developed for better targeted therapy. However, despite the
potent effect of mTOR and PI3K/mTOR inhibitors in cellular
models, they have less durable effect in vivo, thus necessitating
increased dose leading to toxicity (29). Rapalink-1 was developed
to combine the durable effect of rapalogs (owing to binding with
FKBP12) and robust inhibition of both mTORC1 and mTORC2
(31). The effect of Rapalink-1 in abolishing phosphorylation of
mTORC1 (S6, ULK1) and mTORC2 (Akt) effectors was dose-
proportionate and coincided with the robust overall decrease in
cell viability of the PDX organoids. This was accompanied by
significant reduction of expression of metabolic enzymes that
have been linked to mTOR signaling, in particular glutamine-
requiring pathways and lipid metabolism (19, 20). It is notable
that we also found enrichment of genes relating to lipid
metabolism and Myc. The latter is involved in increased
glutamine metabolism in a number of cancers (42). Hence, it
is possible that growth of the bone metastatic PCa organoids is
highly dependent on mTOR-mediated glutamine- and/or lipid
metabolism, making them particularly susceptible to combined
mTORC1/2 inhibition.

The analysis of LAPC9 tumor lysates from mice treated
with Rapalink-1 indicates residual mTORC2 activity as well
as fewer metabolic alterations compared to Rapalink-1-treated
organoids. Despite this divergence, treatment of mice with
Rapalink-1 every 6 days was sufficient to significantly reduce
tumor growth, as assessed by both tumor size and Ki67 staining
on lysates-matched tumor sections. Of note, the analyzed
tumor lysates from the Rapalink-1-treated mice group showed
that the effects on mTOR activation and lipid metabolism
regulation were heterogeneous (Supplementary Figure 4). This
could be explained by differences in Rapalink-1 bioavailability
among the particular mice, owing to factors like varying
tumor size, structure or vascularization, as well as by the
onset of compensatory mechanisms in tumors from treated
mice. Moreover, both LAPC9 PDX and organoids treated
with Rapalink-1 showed a significant decrease of CD44+ cells,
indicating not only a direct cytotoxic effect of the treatment,
but also the alteration of PCa subpopulation homeostasis. In
line with this observation, in vivo Rapalink-1 treatment altered
the expression of aldehyde dehydrogenases (ALDH) in the
surviving cells, as evidenced by the ALDEFluor assay. In the
assay, the large-spectrum ALDH inhibitor DEAB is provided
together with a fluorogenic substrate detecting multiple ALDH
isoforms. However, the DEAB does not inhibit all isoforms of
ALDH (17), an effect that was evident in the reported results.
Recently, Vaddi et al. published a study linking functional CSC
traits of multiple PCa cell lines to an enriched PI3K/Akt/mTOR
pathway both at the RNA and at the protein levels (43). Of
note, pharmacological inhibition of the PI3K/Akt pathway was
associated with a reduction of the CSC population in vitro,
in line with previous reports from Dubrovska et al. (44, 45).
The effect of Rapalink-1 on different LAPC9 subpopulations
could also explain the small but significant increase of viability
detected both in vitro at sublethal doses of Rapalink-1 and

in vivo. In both cases, the dose of Rapalink-1 used could
have had a direct cytotoxic effect on the more mTOR-addicted
subpopulations, selecting or inducing a subset of CD44-low,
metabolically slow cells.

Compared to breast cancer, PCa bone metastasis were also
enriched for pathways involved in oxidative phosphorylation
and lipid metabolism (fatty acid metabolism, peroxisome,
adipogenesis, cholesterol homeostasis), a finding in line with an
increase in lipid metabolism in more advanced PCa stages (46)
and supporting the clinical relevance of targeting this metabolic
branch to prevent the development of androgen-resistance (47).
An altered lipid metabolism has been linked to CSC for multiple
cancer types (48). Given the substrate preferences of the different
ALDH isoforms (49), it would be interesting to determine if
upregulation of the mTOR pathway induced metabolic rewiring
in PCa cells, or metabolic diversification of subpopulations
within the tumor. Further experiments are required to support
this hypothesis.

In conclusion, we provided a molecular analysis of a group
of breast and prostate cancer bone metastasis and showed the
translational applicability of an organoid-based drug screen on
patient-derived bone metastatic tissue. We demonstrated the
effectiveness of the dual mTORC1-2 inhibitor Rapalink-1 in
reducing PCa tumor growth, an effect that was associated with
the depletion of CD44+ cells in a PDX model of advanced, bone
metastatic PCa.
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